2. Sustainability
  3. Environment
  4. Supply Chain

We use cookies to enable you to make the best possible use of our website and to improve our communications with you. We take your preferences into regard and process data for analytics and personalization only if you give us your consent by clicking on "Agree and continue" or if you make a specific selection by clicking on "Set cookie preferences". You can revoke your consent at any time with effect for the future. Information on the individual cookies used and the possibility of revocation can be found in our privacy policy and in the cookie policy.

Agree and continue Set cookie preferences

Supply Chain

By the time a raw material has been transformed into a component installed in a Volkswagen, it will have passed through some 15,000 stations in the course of its production, treatment, finishing and transportation. Together with its many thousands of suppliers, Volkswagen does its best to make this long and complex process chain as environmentally compatible as possible.

The future is renewable

One of Volkswagen’s aims is to conserve resources. With this in mind, one thing that Volkswagen focuses on is the use of sustainable resources such as renewable raw materials. The objective is to reduce CO2 emissions over the entire vehicle life cycle, and the materials used include flax, hemp, cellulose, cotton and kenaf.

Kenaf? That’s right. Kenaf is a tropical plant belonging to the mallow family. Its cane-like stems grow to a height of four meters, and the fine fibers that are extracted from them go to produce the door trim of the current Golf, for example. Other applications of renewable raw materials include armrests, floor insulation, trunk linings, door and side panel trim and hood insulation.

Another form of sustainable materials are what are known as secondary raw materials. These are recyclates that are made from production residues or waste material. Recycled plastics are used in spare wheel compartment covers, floor coverings or wheel arch inserts, for instance. Approximately one third of the gross weight of many Volkswagen brand vehicles is already accounted for by recycled metal and oil-based materials.

The objective: reducing CO₂ emissions over the entire vehicle life cycle.

Volkswagen AG

Managing the aluminum cycle

An aluminum component at Audi. This material is some two-thirds lighter than steel.

Aluminum is an important staple of the automotive industry when it comes to lightweight design, but it is more energy-intensive to produce than steel. To address this issue, Audi is currently testing an innovative recycling concept designed to conserve resources.

Together with a supplier, Audi recently rolled out the Aluminum Closed Loop pilot project to identify the potential for more efficient recycling of aluminum. The aim is to set up a closed-loop recycling system between the company and its suppliers.

It works like this: Offcuts from the sheet aluminum used in the Audi press shops are returned directly to the supplier, who recycles them. The resulting secondary raw materials are then used by Audi in its production process, eliminating the need for energy-intensive production of new aluminum, which in turn benefits the environment. The bottom line is that Audi not only reduces its energy consumption, and therefore its CO₂ emissions, but at the same time also cuts its uptake of primary raw materials. To define the system requirements and constraints, Audi is currently analyzing all the relevant process steps. On this basis the company will then explore the potential for using the system across the Group.

It’s about conserving resources by applying the principle of resource cycle management.

On-site savings

With a plant like this, Volkswagen can now melt aluminum offcuts on site, creating new raw material.

The Volkswagen plant in Kassel manufactures engines, gearboxes and body parts for the entire Volkswagen Group. As most of the production processes at the components plant involve the machining of metals – for example drilling, milling or grinding – large quantities of aluminum cuttings are also produced.

In the past, these cuttings were shipped to external contractors for melting and then returned to Volkswagen as a solid material. Before it could be used for the production of new parts, the aluminum had to be melted again at the Volkswagen plant.

Now Volkswagen has simplified this process. All aluminum cuttings produced from alloy Al 226 with a residual moisture level below two percent can now be melted directly on site, producing new raw material.

The specific environmental benefit is that the Kassel plant can cut the amount of aluminum alloy it purchases each year by 1,050 tonnes. As aluminum production is highly energy-intensive, this also means a considerable drop in the associated CO2 emissions. Thanks to the new approach, Volkswagen itself saves some 3,250 MWh of energy per year, representing a reduction of 1,430 tonnes in CO2 emissions.

On the logistics side, this process also reduces the distance traveled by trucks by 800,000 kilometers per year. In addition, nitrogen oxide output is cut by 0.5 tonnes per year and Volkswagen also reduces the use of many consumables such as melting salts (-1,300 tonnes p.a.) and calcium hydroxide (-16 tonnes p.a.), as well as the production of waste such as salt slag 
(-2,670 tonnes p.a.) and filter dust (-130 tonnes p.a.).

1,430 tonnes less CO₂ per year.

Important note

When you access this link, you leave the pages of Volkswagen AG. Volkswagen AG does not claim ownership of third-party websites accessible via links and is not responsible for their content. Volkswagen has no influence on the data that is collected, stored or processed on this site. You can find more detailed information on this in the data protection declaration of the provider of the external website.

Continue to page Cancel