Future Mobility
Volkswagen Group’s Solutions for Sustainable Mobility

Prof. Dr. Wolfgang Steiger
Global Government Affairs
Future Technologies
Disclaimer

The offer for shares of Scania AB (the "Offer") referenced in this presentation is not being made, whether directly or indirectly, in Canada, New Zealand or South Africa or in any other jurisdictions where such offer pursuant to legislation and regulations in such relevant jurisdictions would be prohibited by applicable law. Shareholders not resident in Sweden who wish to accept the Offer must make inquiries concerning applicable legislation and possible tax consequences. Shareholders should refer to the offer restrictions included in the tender offer document which has been published on Volkswagen’s website www.volkswagenag.com/ir. The Offer is not being made, directly or indirectly, in or into Canada, New Zealand or South Africa by use of mail or any other means or instrumentality (including, without limitation, facsimile transmission, electronic mail, telex, telephone and the Internet) of interstate or foreign commerce, or of any facility of national security exchange, of Canada, New Zealand or South Africa, and the Offer cannot be accepted by any such use, means, instrumentality or facility of, or from within, Canada, New Zealand or South Africa. Accordingly, this presentation and any documentation relating to the Offer are not being and should not be sent, mailed or otherwise distributed or forwarded in or into Canada, New Zealand or South Africa.

This presentation is not being, and must not be, sent to shareholders with registered addresses in Canada, New Zealand or South Africa. Banks, brokers, dealers and other nominees holding shares for persons in Canada, New Zealand or South Africa must not forward this presentation or any other document received in connection with the Offer to such persons.

Statements in this presentation or in the offer document relating to future status or circumstances, including statements regarding future performance, growth and other trend projections and the other benefits of the Offer, are forward-looking statements. These statements may generally, but not always, be identified by the use of words such as "anticipates", "intends", "expects", "believes", or similar expressions. By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that will occur in the future. There can be no assurance that actual results will differ materially from those expressed or implied by these forward-looking statements due to many factors, many of which are outside the control of Volkswagen AG. Any such forward-looking statements speak only as of the date on which they are made and Volkswagen AG has no obligation (and undertakes no obligation) to update or revise any of them, whether as a result of new information, future events or otherwise, except for in accordance with applicable laws and regulations.

Special notice to shareholders in the United States

The Offer referenced in this presentation is made for shares of Scania AB, a company incorporated under Swedish law, and is subject to Swedish disclosure and procedural requirements, which are different from those of the United States. The Offer is made in the United States in compliance with Section 14(e) of, and Regulation 14E under, the U.S. Securities Exchange Act of 1934, as amended (the "U.S. Exchange Act"), subject to the exemptions provided by Rule 14d-1(d) of the U.S. Exchange Act and otherwise in accordance with the requirements of Swedish law. Accordingly, the Offer is subject to disclosure and other procedural requirements, including with respect to withdrawal rights, the offer timetable, settlement procedures and timing of payments that are different from those applicable under U.S. domestic tender offer procedures and laws.

To the extent permissible under applicable law or regulation, Volkswagen AG and its affiliates or brokers (acting as agents for Volkswagen AG or its affiliates, as applicable) may from time to time, and other than pursuant to the Offer, directly or indirectly purchase, or arrange to purchase, shares of Scania AB, that are the subject of the Offer or any securities that are convertible into, exchangeable for or exercisable for such shares. To the extent information about such purchases or arrangements to purchase is made public in Sweden, such information will be disclosed by means of a press release or other means reasonably calculated to inform U.S. shareholders of Scania AB of such information. In addition, the financial advisors to Volkswagen AG, may also engage in ordinary course trading activities in securities of Scania AB, which may include purchases or arrangements to purchase such securities. Volkswagen AG and/or its affiliates or brokers purchased shares of Scania AB in the extended offer period after the original offer period had ended on April 25, 2014.

NEITHER THE UNITED STATES SECURITIES AND EXCHANGE COMMISSION NOR ANY U.S. STATE SECURITIES COMMISSION OR REGULATORY AUTHORITY HAS APPROVED OR DISAPPROVED OF THIS OFFER, PASSED UPON THE FAIRNESS OR MERITS OF THIS PRESENTATION OR DETERMINED WHETHER THIS PRESENTATION IS ACCURATE OR COMPLETE. ANY REPRESENTATION TO THE CONTRARY IS A CRIMINAL OFFENSE IN THE UNITED STATES.

This presentation contains forward-looking statements and information on the business development of the Volkswagen Group. These statements may be spoken or written and can be recognized by terms such as "expects", "anticipates", "intends", "plans", "believes", "seeks", "estimates", "will" or words with similar meaning. These statements are based on assumptions relating to the development of the economies of individual countries, and in particular of the automotive industry, which we have made on the basis of the information available to us and which we consider to be realistic at the time of going to press. The estimates given involve a degree of risk, and the actual developments may differ from those forecast. Consequently, any unexpected fall in demand or economic stagnation in our key sales markets, such as in Western Europe (and especially Germany) or in the USA, Brazil or China, will have a corresponding impact on the development of our business. The same applies in the event of a significant shift in current exchange rates relative to the US dollar, sterling, yen, Brazilian real, Chinese renminbi and Czech koruna. If any of these or other risks occur, or if the assumptions underlying any of these statements prove incorrect, the actual results may significantly differ from those expressed or implied by such statements. We do not update forward-looking statements retrospectively. Such statements are valid on the date of publication and can be superceded. This information does not constitute an offer to exchange or sell or an offer to exchange or buy any securities.
Societal Challenges

Demographic Change and Urbanization
- Noise, Emissions, Accidents

Global Economy and growing Middle Class
- Increasing Traffic

Resource Competition and Climate Change
- Energy Consumption, CO₂

Connectivity and Mobility
- Data Safety and Security

21. Century → Guideline Sustainability
Sustainable mobility: Volkswagen’s fuel and drive train strategy

Renewable energy sources

- CO$_2$-neutral electricity
- CO$_2$-neutral fuels

Conventional energy sources

- Petroleum
- CNG
Volkswagen XL1

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamics</td>
<td>$cd = 0.189$</td>
</tr>
<tr>
<td>Curb weight</td>
<td>795 kg</td>
</tr>
<tr>
<td>Top speed</td>
<td>160 km/h</td>
</tr>
<tr>
<td>Fuel consumption (NEDC)</td>
<td>0.83 l/100 km</td>
</tr>
<tr>
<td>CO2 emissions (NEDC)</td>
<td>21 g/km</td>
</tr>
<tr>
<td>All-electric range</td>
<td>50 km</td>
</tr>
<tr>
<td>Total range</td>
<td>approx. 500 km</td>
</tr>
</tbody>
</table>
Carbon dioxide: Conventional drive technologies are not enough

Fleet CO₂ emissions

Technologies to increase CO₂ efficiency

- Optimizing conventional drive trains
- CO₂ efficiency measures in the vehicle
- Using alternative drive technologies
- e-hybrid
- TWIN DRIVE
- e.Motion
- e-tron

Technologies and energy sources

EU27 Fleet value in 2006
166g CO₂/km

EU27 Fleet value in 2012
134g CO₂/km

EU27 Fleet value in 2020
95g CO₂/km
Volkswagen Group: Technologies to suit every need
Interurban Mobility

- Golf TSI BlueMotion
- Jetta Hybrid
- Panamera I Hybrid
- Q5 Hybrid
- Golf TDI BlueMotion
- eco up!
Golf TDI BlueMotion
3.2 l/100km, 85g CO₂/km
Measures to improve CO₂ efficiency

Engine

- Combustion system
 - High-performance combustion system
 - Combined turbo- and supercharging
 - Ignition systems
 - Variable valve train
 - Variable compression ratio
- Lightweight design
 - Alternative materials
 - Lightweight design through optimized structures
- Operational strategy
 - Active Cylinder Management
 - Optimizing engine mapping
 - Engine off while coasting
 - Downspeeding
 - NVH at low rpm
- Friction
 - Surface coating
 - Thermal management
 - Utilizing exhaust heat

Gearbox

- Dual-clutch gearbox
 - Gear-ratio spread
 - Efficiency
 - Performance when pulling away
 - Low-rpm solution
Evolution of renewable energy pathways

Source/Feedstock

- Solar energy
 - Vegetable oil
 - Glucose
 - Syngas
 - "green" electricity
 - CO₂ + sunlight

Energy carrier for mobility

- Gasoline and Diesel
- Gas
- Battery and fuel cell
Electrifying the Drive systems at Volkswagen

- **Micro hybrid/start-stop**
- **Mild hybrid**
- **Full hybrid (HEV)**
- **Plug-in hybrid (PHEV)**
- **Range extender (RE BEV)**
- **Battery vehicle (BEV)**
- **Fuel cell (FCEV)**

Electric motor

- **Boost**
- **Internal combustion engine**

Electric range

- 2 km
- 20–80 km
- 50–120 km
- 80–200 km
- 400–600 km

Electric vehicle

1) > 2020 Internal combustion engine

1) > 2020

2014-07-04 Barclays London Steiger.pptx
Volkswagen Group: Technologies to suit every need
Urban Mobility

- Golf TSI BlueMotion
- Golf TDI BlueMotion
- Jetta Hybrid
- eco up!
- Panamera 1 hybrid
- Q5 Hybrid
- Golf blue-e-motion
- e-up!
Volkswagen e-up!
Development in 2010 to 2013 e-up!

<table>
<thead>
<tr>
<th></th>
<th>e-up! 2010</th>
<th>e-up! 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Cost</td>
<td>-16 %</td>
<td></td>
</tr>
<tr>
<td>Battery Size</td>
<td>-21 %</td>
<td></td>
</tr>
<tr>
<td>Energy Consumption*</td>
<td>-23 %</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>160 km</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>1.139 kg</td>
<td></td>
</tr>
<tr>
<td>Aerodynamic $cw \times A$</td>
<td>-6 %</td>
<td>0.644 m²</td>
</tr>
<tr>
<td>Rolling-Resistance</td>
<td>-6 %</td>
<td>7.2 %</td>
</tr>
</tbody>
</table>

| Battery Size | 18.7 kWh |
| Energy Consumption* | 11.7 kWh/100km |

* incl. Recharging
The electric drive system of the e-Golf

Electric machine
Permanent magnet synchronous motor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. power output</td>
<td>85 kW</td>
</tr>
<tr>
<td>Constant power output</td>
<td>50 kW</td>
</tr>
<tr>
<td>Max. torque</td>
<td>270 Nm</td>
</tr>
<tr>
<td>Constant torque</td>
<td>160 Nm</td>
</tr>
<tr>
<td>Range</td>
<td>180 km</td>
</tr>
</tbody>
</table>
Roadmap for high-energy batteries

All-electric range in km **

Conventional lithium-ion technology

- 150 km 140 kWh/kg*
- 190 km 170 kWh/kg*
- 250 km 220 kWh/kg*

Lithium-sulfur batteries

- 300 km 500 kWh/kg*

Lithium-air batteries

- 520 km 1000 kWh/kg*

New battery technologies

** Based on Golf blue e-motion with constant battery volume

* Energy density per cell
Range Improvement –
More than just Battery Size

- Energy consumption
- Weight
- Aerodynamic
- Rolling Resistance

Range [km]

Battery Capacity [in kWh]
Outlook Mileage e-up! and e-Golf

<table>
<thead>
<tr>
<th>Battery Cells [Ah]</th>
<th>Battery Capacity [kWh]</th>
<th>Range NEDC [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status: 25</td>
<td>18.7</td>
<td>160</td>
</tr>
<tr>
<td>Outlook: 28</td>
<td>21.0</td>
<td>185</td>
</tr>
<tr>
<td>34</td>
<td>25.5</td>
<td>220</td>
</tr>
<tr>
<td>36</td>
<td>26.9</td>
<td>230</td>
</tr>
</tbody>
</table>

Outlook Mileage e-up! and e-Golf

<table>
<thead>
<tr>
<th>Battery Cells [Ah]</th>
<th>Battery Capacity [kWh]</th>
<th>Range NEDC [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status: 25</td>
<td>24.2</td>
<td>180</td>
</tr>
<tr>
<td>Outlook: 28</td>
<td>27.1</td>
<td>205</td>
</tr>
<tr>
<td>34</td>
<td>32.9</td>
<td>250</td>
</tr>
<tr>
<td>36</td>
<td>34.9</td>
<td>265</td>
</tr>
</tbody>
</table>
Combined Charging System – One System for All

Easy-Handling and Widely Spread User Acceptance
Uniform, open and standardised solution as future-proof investment

Simple – Safe – Flexible
No need for variants

Charging Time
- Ultra Fast: 15 min
- Fast: 1 h
- Basic: 8 h

Speed of Charging
- High Power
- DC

Type 2 Core
Volkswagen Group: Technologies to suit every need
Unlimited Mobility

- Golf TSI BlueMotion
- Jetta Hybrid
- Golf PHEV
- Golf blue-e-motion
- e-up!
- Panamera S e-hybrid
- AUDI A3 e-tron
- Panamera 1 hybrid
- Audi A3 e-tron
- Q5 Hybrid
- eco up!
- Panamera S e-hybrid
- Audi A3 e-tron
- Panamera 1 hybrid
- Golf TDI BlueMotion
- Golf TDI BlueMotion
- Panamera S e-hybrid
- Audi A3 e-tron
- Panamera 1 hybrid
- Golf TSI BlueMotion
- Jetta Hybrid
- Golf PHEV
- Golf blue-e-motion
- e-up!
- XL1
Audi A3 e-tron

1.4 l 110 kW TSI engine with aluminum cylinder block and crankcase

Lithium-ion battery
96 cells, 352 V, 8.8 kWh

Power electronics including DC-DC converter

Dual clutch gearbox DQ400E with integrated electric machine (80 kW)
The MQB plug-in drive train with the DQ400E gearbox

Technical specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC engine</td>
<td>110 kW / 250 Nm</td>
</tr>
<tr>
<td>Electric motor</td>
<td>80 kW / 330 Nm</td>
</tr>
<tr>
<td>System output</td>
<td>150 kW</td>
</tr>
<tr>
<td>System torque</td>
<td>350 Nm</td>
</tr>
<tr>
<td>HV battery capacity</td>
<td>8.8 kWh</td>
</tr>
<tr>
<td>All-electric range</td>
<td>approx. 50 km</td>
</tr>
</tbody>
</table>
Assembly kit for hybrid drive systems

<table>
<thead>
<tr>
<th>Engine</th>
<th>Electric machine</th>
<th>Gearbox</th>
<th>Battery</th>
<th>Power electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-cylinder in-line TDI</td>
<td>HEM 20</td>
<td>DQ200E</td>
<td>HEV</td>
<td></td>
</tr>
<tr>
<td>3-cylinder in-line TSI/TDI</td>
<td>HEM 60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-cylinder in-line TSI/TDI</td>
<td>HEM 80</td>
<td>DQ400E</td>
<td>PHEV</td>
<td></td>
</tr>
</tbody>
</table>
Competition of Technologies

- Customer requirement: Range > 500 km
- Both Technologies have specific Challenges
Fuel Cell Technology – HyMotion

- **Power Fuel Cell**: 85 kW
- **Battery Capacity**: 1.1 kWh
- **Coaxial Drivetrain**
 - **Power E-Motor**: 85 kW
 - **Torque E-Motor**: 270 Nm
- **Range**: 420 km
- **Max Speed**: 160 km/h
- **Acceleration 0-100 km/h**: 12 s
Fuel Cell Technology – HyMotion

- Fuel Cell Stack
- Fuel Cell Controller
- Air Cooler
- Fuel Cell peripherals
- Fuel Cell System
- Triport DC/DC Transformer
- Hybrid-Battery
- Hydrogen Tanks
- Power Electronics
- E-Motor
Volkswagen is electrifying all vehicle classes

<table>
<thead>
<tr>
<th>Year</th>
<th>BEV</th>
<th>PHEV</th>
<th>PHEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>VW e-up!</td>
<td>Audi A3</td>
<td>Audi A6</td>
</tr>
<tr>
<td>2011</td>
<td>VW Jetta</td>
<td>VW Golf</td>
<td>Audi A8</td>
</tr>
<tr>
<td>2012</td>
<td>VW e-Golf</td>
<td>Porsche Cayenne</td>
<td>Derivatives of other Group brands</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014 → beyond</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- HEV: Hybrid Electric Vehicle
- BEV: Battery Electric Vehicle
- PHEV: Plug-in Hybrid Electric Vehicle

Derivatives of other Group brands:
- Audi Q7
- VW Passat
- Porsche Panamera

Vehicles:
- Volkswagen Touareg
- Audi Q5
- Volkswagen Jetta
- Volkswagen e-Golf
- Volkswagen e-up!
- Porsche Panamera S
- Porsche Cayenne S
- Porsche 918 Spyder
- Audi A6
- Audi A8
- Audi A3
- Audi Q7
- Volkswagen Golf
- Volkswagen Passat
- Audi A8
- Volkswagen Panamera
Power to Fuel - Opportunities to Access Renewable Power

- **Electricity Grid** "Green Electricity"
- **Power Station** to **H₂ Storage**
- **Electrolysis** to **Electricity**
- **H₂ Storage** to **H₂ Filling Station**
- **Direct Injection** to **C₀Hₐ**
- **Fischer-Tropsch-Synthesis** to **H₂**
- **Methanisation** to **CO₂**
- **Power Station** to **Methane Storage**
- **Natural Gas Pipeline** to **CNG Filling Station**

Charging Station

2014-07-04 Barclays London Steiger.pptx
Electric Mobility – a Systems Approach

Source: Nationale Plattform Elektromobilität (NPE)
Thank you for your Attention!
Future Mobility
Volkswagen Group’s Solutions for Sustainable Mobility

Prof. Dr. Wolfgang Steiger
Global Government Affairs
Future Technologies

2014-07-04